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Material

- with Paul Hufe and Danile Mahler, The roots of inequality:
estimating inequality of opportunity from regression trees and
random forest (in progress);

- with Guido Niedhoéfer, The Evolution of Inequality of
Opportunity in Germany: A Machine Learning Approach
(ROIW, 2021);

- with Davillas, Jones and Scarchilli, Model-based Recursive
Partitioning to Estimate Unfair Health Inequalities in the United
Kingdom (in progress).



Motivation

Machine Learning is increasingly used in social science;

is ML useful to analyse socially inequalities?

trees-based algorithms may unveil the roots of inequality;

trees with exposed roots tend to be weak;

but there are precautions we can take.



Equality of opportunity

- Moral philosophers: Rawls (1971), Sen (1979), Dworkin
(1981), Arneson (1989), Cohen (1989);

- John Roemer:
Equality of opportunity (1998);

Marc Fleurbaey and Francois Maniquet:
Responsibility-sensitive egalitarianism (2011);

today one of the most universally accepted political ideal.



Social inequalities reproduction

PYRAMIDE A RENVERSER

Nicolas Lokhoff, Social Pyramid, 1901



Inequality of opportunity (IOP)

- ex-ante interpretation:
IOP = between-type inequality;
- ex-post interpretation:

IOP = inequality within individuals making same choices.



Between-type I0P

- Early contributions: Marrero and Rodriguez (2012) report
IOP about 10% of total inequality in EU;

- interpreted as lower bound (Ferreira and Gignoux, 2011),
inflated with longitudinal surveys (Hufe et al., 2017);

- the growing availability of data create clashes with
Roemer’s definition of types;

- discretionality means incomparability of estimates.



IOP measurement as a prediction problem

- A trivial descriptive exercize;
- but an exciting out-of-sample prediction challenge;

- to what extent circumstances beyond individual control are
predictive of outcomes later in life?



Exposed roots pros

Picture: mihochannel.extend



Tree-based algorithms

- Among supervised ML algorithms, regression trees are an
attractive option to estimate between-group variability;

- trees predict a dependent variable based on observable
featuress (Morgan and Sonquist,1963; Breiman et al.,1984);
- the population is divided into non-overlapping subgroups

based on a partition of the predictors’ space;

- prediction of each observation is the the mean value of the
dependent variable in the group.



What is a tree? cnt.
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What is a tree? cnt.

yes class >= 2.5

died
370 / 501 age >=16
lived
class >=1.5 34 / 36
died lived
145 / 233 174 / 276

Source: Varian, 2014




Pruning

- a very deep tree performs poorly out-of-sample;

- different solutions to prevent overfitting lead to different
type of trees;

- conditional inference trees condition each split on a
sequence of statistical test (Hothorn et al., 2006).



Conditional inference trees
- choose a «a € [0, 1];
- test the null hypothesis: outcome I circumstances;
- if no (adjusted) p — value < a — exit the algorithm;
- select the variable, with the lowest p — value;

- test the discrepancy between the subsamples for each
possible binary partition based on the selected variable;

- choose the splitting point that yields the lowest p — value;

- repeat the algorithm for each of the resulting subsamples.



Opportunity trees: pros

- the selection of circumstances is non-arbitrary;
- the model specification is endogenous to data;

- tell a story about the opportunity structure.



Germany, EU-SILC 2011
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Germany, EU-SILC 2011
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Australia, HILDA 2015
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ROOT CARE: WHEN ROOTS BECOME A PROBLEM
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Opportunity trees: cons

- can be unstable (high variance);

- misleading with highly correlated circumstances
(multicollinearity );

- perform poorly if the data generating process is linear.
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Bootstrap aggregation and random forests

- Aggregation of many weak learning algorithms results in a
stronger learner;

- a forest outperform trees by aggregating predictions of
hundreds of trees;

- individual prediction is obtained from many likely
opportunity structures;

- useful to assess relative predictive power of different
circumstances.



Random forest: IOP in EU
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Random forest: most predictive circumstance
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Did we forget choices?

- Ex-post IOP: inequality within individuals making the
same choices.

- Roemer (1998): when choices are unobservable compare
type-specific outcome distributions.



Ex-post IOP: Germany 1992
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Opportunity tree: Germany 1992
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Opportunity tree: Germany 2016
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Ex-post IOP: Germany 1992
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IOP in Germany 1992-2016
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Changing opportunity structure, Germany 1992-2016
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Did we forget choices?

- Health inequality is a case in which observing several
choices is possible;

- circumstances can affect outcome through two channels:

1. fixed type-effect,

2. different return to choices across types;



Model-based recursive partitioning (MOB)

- Introduced by Zeileis et al. (2008): first estimate a model
in the population:

e.g. : h; = Bo + p1 x LifeStyle;
- then perform a sequence of test on the instability of the

parameters across possible subgroups;

- stop when a further split does not improve the
out-of-sample prediction accuracy.



Health inequality of opportunity in UK: choices
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Health inequality of opportunity in UK: MOB

Age-adjusted Health MOB
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Conclusions

- Interpreting IOP as a prediction problem may deepen our
understanding of inequality (e.g. intersectionality);

- tree-based methods are not particularly sophisticated but
they well handle the ML ‘accuracy-interpretability’
trade-off;

- evaluating the predictive ability of our model tells us a
single fundamental truth: we know very little!
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