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Abstract

In this paper we propose the use of machine learning methods to estimate in-

equality of opportunity. We illustrate how our proposed methods – conditional

inference regression trees and forests – represent a substantial improvement over

existing estimation approaches. First, they reduce the risk of ad-hoc model selec-

tion. Second, they establish estimation models by trading off upward and downward

bias in inequality of opportunity estimations. Finally, regression trees can be graph-

ically represented; their structure is immediate to read and easy to understand. This

makes the measurement of inequality of opportunity more easily comprehensible to

a large audience. The advantages of regression trees and forests are illustrated by

an empirical application for a cross-section of 31 European countries. We show that

arbitrary model selection may lead researchers to overestimate (underestimate) in-

equality of opportunity by up to 300% (40%) in comparison to our preferred method.
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INTRODUCTION

Equality of opportunity is an important ideal of distributive justice. It has widespread

support in the general public (Alesina et al., 2018; Cappelen et al., 2007) and its realization

has been identified as an important goal of public policy intervention (Chetty et al., 2016;

Corak, 2013). In spite of its popularity, providing empirical estimates of equality of

opportunity is notoriously difficult. Next to normative dissent about the precise factors

that should be viewed as contributing to unequal opportunities, current approaches to

estimate inequality of opportunity are encumbered by ad-hoc model selection that lead

researchers to over- or underestimate inequality of opportunity.

In this paper we propose the use of machine learning methods to overcome the issue

of ad-hoc model selection. Machine learning methods allow for flexible models of how

unequal opportunities come about while imposing statistical discipline through criteria

of out-of-sample replicability. These features serve to establish inequality of opportunity

estimates that are less prone to upward or downward bias. For example, in comparison

to our preferred method, current estimation approaches overestimate inequality of op-

portunity in Scandinavian countries by close to 300%. While these figures may inform

policy debates about inclusive institutions, they are the result of overfitted estimation

models that fail to replicate in independent samples of the same underlying population.

This example illustrates that the choice of appropriate model specifications is of great

importance for the analysis of institutional configurations and the ensuing policy debate.

The empirical literature on the measurement of unequal opportunities has been flour-

ishing since John Roemer’s (1998) seminal contribution, Equality of Opportunity. At the

heart of Roemer’s formulation is the idea that individual outcomes are determined by

two sorts of factors: those factors over which individuals have control, which he calls

effort, and those factors for which individuals cannot be held responsible, which he calls

circumstances. While outcome differences due to effort exertion are morally permissible,

differences due to circumstances are inequitable and call for compensation.1 Grounded

1The distinction between circumstances and efforts underpins many prominent literature branches
in economics such as the ones on intergenerational mobility (Chetty et al., 2014a,b), the gender pay
gap (Blau and Kahn, 2017) and racial differences (Kreisman and Rangel, 2015). For different notions of
equality of opportunity, see Arneson (2018).
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on this distinction, inequality of opportunity measures quantify the extent to which indi-

vidual outcomes are determined by circumstance characteristics. In particular, inequality

of opportunity is frequently measured by using a set of circumstances to predict an out-

come of interest and calculating inequality in the predicted outcomes: the more predicted

outcomes diverge, the more circumstances beyond individual control influence outcomes,

and the more inequality of opportunity there is.

Estimates of inequality of opportunity matter for development policy in several ways.

They identify the most opportunity deprived and can thus help to improve the targeting of

resources through social protection programs and other transfers (Belhaj Hassine, 2011).

Comparing estimates over time and across countries may help to determine the extent to

which a policy area should be prioritized (Ferreira et al., 2018). Given that inequality of

opportunity is highly associated with both inequality of outcomes and pro-poor growth,

policies to reduce inequality of opportunity are likely to reduce inequality and poverty as

well (Marrero et al., 2016; Peragine et al., 2013).

In spite of their policy relevance, current approaches to estimate inequality of oppor-

tunity suffer from biases that are the consequence of critical choices in model selection.

First, researchers have to decide which circumstance variables to consider for estima-

tion.2 The challenge of this task grows with the increasing availability of high-quality

datasets that provide very detailed information with respect to individual circumstances

(Björklund et al., 2012a; Hufe et al., 2017). On the one hand, discarding relevant cir-

cumstances from the estimation model limits the explanatory scope of circumstances and

leads to downward biased estimates of inequality of opportunity (Ferreira and Gignoux,

2011). On the other hand, including too many circumstances overfits the data and leads

to upward biased estimates of inequality of opportunity (Brunori et al., 2019). Second,

researchers must choose the functional form according to which circumstances co-produce

the outcome of interest. For example, it is a well-established finding that the influence

of similar child care arrangements on various life outcomes varies strongly by biological

sex (Felfe and Lalive, 2018; Garćıa et al., 2018). In contrast to such evidence, many

2Roemer does not provide a fixed list of circumstance variables. Instead he suggests that the set of
circumstances should evolve from a political process (Roemer and Trannoy, 2015). In empirical imple-
mentations typical circumstances include biological sex, socioeconomic background and race.
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empirical applications presume that the effect of circumstances on individual outcomes is

log-linear and additive while abstracting from possible interaction effects (Bourguignon

et al., 2007; Ferreira and Gignoux, 2011). On the one hand, restrictive functional form

assumptions limit the ability of circumstances to explain variation in the outcome of in-

terest and thus force another downward bias on inequality of opportunity estimates. On

the other hand, limitations in the available degrees of freedom may prove a statistically

meaningful estimation of complex models with many parameters infeasible.

This discussion highlights the non-trivial challenge of selecting the appropriate model

for estimating inequality of opportunity. Researchers must balance different sources of

bias while avoiding ad-hoc solutions. While this task is daunting for the individual re-

searcher, it is a standard application for machine learning algorithms that are designed

to make out-of-sample predictions of a dependent variable based on a number of observ-

able predictors. In this paper, we use conditional inference regression trees and forests to

estimate inequality of opportunity (Hothorn et al., 2006). Introduced and popularized by

Breiman et al. (1984), Breiman (2001), and Morgan and Sonquist (1963), regression trees

and forests belong to a set of machine learning methods that is increasingly integrated into

the statistical toolkit of economists (Athey, 2018; Mullainathan and Spiess, 2017; Varian,

2014). By drawing on a clear-cut algorithm, they obtain predictions without assumptions

about which and how circumstances interact in shaping individual opportunities. Hence,

the model specification is no longer a judgment call of the researcher but an outcome of

data analysis. As a consequence they cushion downward bias by flexibly accommodating

different ways of how circumstance characteristics shape the distribution of outcomes.

Moreover, the conditional inference algorithm branches trees (and constructs forests) by

a sequence of hypothesis tests that prevents the inclusion of noisy circumstance parame-

ters. This reduces the potential for upward biased estimates of inequality of opportunity

through model overfitting. Hence, regression trees and forests address the detrimental

consequences of ad-hoc model selection in a way that is sensitive to both upward and

downward bias.

To showcase the advantages of regression trees and forests we compare them to ex-

isting estimation approaches in a cross-sectional dataset of 31 European countries. We
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demonstrate that current estimation approaches overfit (underfit) the data which in turn

leads to upward (downward) biased estimates of inequality of opportunity. These biases

are sizable. For example, some standard methods overestimate inequality of opportunity

in Scandinavian countries by close to 300%, whereas they underestimate the extent of in-

equality of opportunity in Germany by more than 40%. Hence, cross-country comparisons

based on standard estimation approaches yield misleading recommendations with respect

to the need for policy intervention in different societies. We illustrate how regression trees

and forests can be used to analyze opportunity structures in different societies. We find

that mothers’ education and occupation are the most important predictors of children’s

income in Eastern Europe, while in Western/Southern Europe fathers’ occupation and

education are most important, and in Northern Europe area of birth is most important.

Although we are careful to highlight the non-causal nature of our estimates, such analyses

provide useful starting points for policymakers to target areas for opportunity equalizing

reforms.

In a parallel paper, Blundell and Risa (2019) apply machine learning methods to the

estimation of intergenerational mobility – a literature in which similar issues of model

selection arise.3 In particular, they use machine learning methods to validate rank-rank

estimates of intergenerational mobility against an extended set of child circumstances to

assess the completeness of the prevalent intergenerational mobility approach as a measure

for equal opportunities. In contrast to their work, we directly estimate inequality of

opportunity statistics. As a consequence, our focus is less on the downward bias that

follows from focusing on one circumstance characteristic only (e.g. parental income) but

on balancing both downward and upward bias if the set of available circumstances is large

in relation to a given sample size.

The remainder of this paper is organized as follows: section I gives a brief introduction

to current empirical approaches in the literature on inequality of opportunity. Section II

introduces conditional inference regression trees and forests, and illustrates how to use

3These issues include the influence of non-linearities along the parental distribution (Björklund et al.,
2012b; Corak and Piraino, 2011) and the question of whether intergenerational persistence is sufficiently
characterized by focusing on the parent-child link only (Braun and Stuhler, 2018; Mare, 2011). Further-
more, recent works in this branch of the literature go beyond single indicator models and use many proxy
variables to construct comprehensive indicators for the underlying parental social status (Vosters, 2018;
Vosters and Nybom, 2018).

5



them in the context of inequality of opportunity estimations. An empirical illustration

based on the EU Survey of Income and Living Conditions is contained in section III. In

this section we also highlight the particular advantages of tree and forest-based estimation

methods by comparing them to the prevalent estimation approaches in the literature.

Lastly, section IV concludes.

I EMPIRICAL APPROACHES TO EQUALITY OF

OPPORTUNITY

Theoretical Set-up and Notation. Consider a population N := {1, ..., N} and an

associated vector of non-negative outcomes y = (y1, ..., yN). Outcomes are the result of two

sets of factors: First, a set of circumstances beyond individual control: Ω := C1× ...×CP .

Second, a set of efforts Θ := E1 × ...×EQ. In what follows, Ω and Θ will be referred to

as the circumstance and effort space, spanned by the dimensions (Cp, p = 1, ..., P ) and

(Eq, q = 1, ..., Q), respectively. We define the (P × 1)-vector ωi ∈ Ω as a comprehensive

description of the circumstances with which i ∈ N is endowed. Analogously we define the

(Q × 1)-vector θi ∈ Θ as a comprehensive description of the efforts that are exerted by

i ∈ N.

The outcome generating function can be defined as follows:

Ω×Θ 3 (ω, θ) 7→ d(ω, θ) =: y, y ∈ R+, (1)

such that for every i ∈ N, the individual outcome yi is a function of her circumstances

ωi and the effort θi she exerts. Individual effort exertion is plausibly co-determined by

circumstance characteristics. We follow Roemer (1998) in adopting a relative conception

of effort. Normatively, this assumption entails a stance according to which outcome differ-

ences due to a correlation between circumstances and effort constitute a violation of the

opportunity egalitarian ideal. For example, if individuals work shorter hours due to wage

discrimination in the labor market we would deem the ensuing income differences worth

of compensation. Econometrically, this assumption entails that θ is purged of its corre-

lation with circumstance characteristics ω such that effort is independently distributed
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of circumstance characteristics (see Lefranc et al., 2009; Roemer and Trannoy, 2015, for

discussions). While such a conception is in line with the majority of the literature, our

estimation approach is not dependent on it and can be easily extended to alternative cuts

between ω and θ (Jusot et al., 2013).

Based on the realizations of individual circumstances ωi the population can be par-

titioned into a set of types. We define the type partition T = {t1, ..., tM}, such that

individuals are member of one type if they share the same set of circumstances: i, j ∈

tm ⇔ ωi = ωj, ∀tm ∈ T, ∀i, j ∈ N. Hence, types define one particular way of par-

titioning the population into groups, where group membership indicates uniformity in

circumstances.

Measurement. Opportunity egalitarians are averse to inequality to the extent that it

is rooted in circumstance factors that are beyond individual control. They are agnostic

towards inequalities that originate from differences in effort exertion. In spite of the intu-

itive appeal of this idea, the literature has suggested a variety of formulations that differ

in their precise normative content. Each of these different formulations is pinned down by

combining a principle of compensation with a principle of reward (Aaberge et al., 2011;

Almås et al., 2011; Fleurbaey, 1995; Ramos and Van de gaer, 2016). The former specifies

how differences due to circumstances should be compensated. The latter specifies to what

extent differences due to effort should be respected. In this work we exclusively focus on

the principles of ex-ante compensation and utilitarian reward. Measures satisfying these

two principles were first proposed in Checchi and Peragine (2010) and Van de gaer (1993).

They are the most widely applied formulations in empirical works on equality of opportu-

nity. To keep our analysis tractable we restrict ourselves to this particular conception of

inequality of opportunity. However, our estimation approach is not dependent on it and

can be easily extended to alternative measures of inequality of opportunity.

The ex-ante view of compensation focuses on between-type differences in the value of

opportunity sets without paying attention to the specific effort realizations of individual

type members. That means, we always prefer a distribution y′ over y if the former is

obtained from the latter by making a transfer from a more advantaged type to a less

advantaged type. Utilitarian reward specifies zero inequality aversion with respect to

7



income differences within a type. As a consequence, the value of the opportunity set of

a type is pinned down by the expected value of its outcomes, E[y|ω]. Thus, the distri-

bution of opportunities in a population can be expressed by the following counterfactual

distribution yC :

yC = (yC1 , ..., y
C
i , ..., y

C
N) = (E[y1|ω1], ...,E[yi|ωi], ...,E[yN |ωN ]). (2)

From this distribution one can construct ex-ante utilitarian measures of inequality of

opportunity by choosing any functional I() that satisfies the following two properties:

1. I(yC) decreases (increases) through transfers from i to j if i is from a circumstance

type with a higher (lower) expected value of outcomes than the recipient j.

2. I(yC) remains unaffected by transfers from i to j if they are members of the same

type.

In most empirical applications I() represents an inequality index satisfying the stan-

dard properties of anonymity, the principle of transfers, population replication, and scale

invariance (Cowell, 2016).4 Examples of the latter are the Gini index or any member of the

generalized entropy class. Note that the choice of I() is normative in itself as it specifies

the extent of inequality aversion at different points of the counterfactual distribution yC .

For example, the mean logarithmic deviation (MLD) would value compensating transfers

to the most disadvantaged types more than the Gini index. In this work we are agnostic

towards the normatively correct choice of I(). While we will present our main results in

terms of the Gini index, we provide robustness checks based on other inequality indexes

in Supplementary Material B.

Note that the measurement of inequality of opportunity can also be understood as a

decomposition exercise where total inequality is split into a between- and a within-group

4The β coefficient from intergenerational mobility regressions can also be interpreted as an ex-
ante utilitarian measure of inequality of opportunity. In the intergenerational mobility framework,

β =
E(yic|yip)

yip
, where yip equals parental income as the sole circumstance. Hence, the functional ap-

plied to the distribution of conditional expectations can be written as I() = 1
yip

. Note that β decreases

(increases) through transfers from children from advantaged (disadvantaged) backgrounds to children
from less (more) advantaged backgrounds. However, β remains unaffected by transfers between children
from parental households of equal income.
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component. It thereby relates to the broad literature on distributional decompositions in

labor economics (Fortin et al., 2011). However, it is important to highlight that oppor-

tunity egalitarians view differences among circumstance groups as normatively objection-

able regardless of whether these differences are the result of compositional differences in

(un)observed characteristics (e.g. educational achievement and occupational choices) or

the return to such characteristics. While distinctions among these different explanations

are important for the design of appropriate policy responses, they are of indifference for

the measurement of inequality of opportunity in the ex-ante utilitarian sense.

Given the measurement decisions described above, we require an estimate of the con-

ditional outcome distribution yC . The data generating process described in equation 1

can be rewritten as follows:

y = d(ω, θ) = f(ω) + ε = E(y|ω) + ε = yC + ε, (3)

where E(y|ω) captures variation due to observed circumstances. The iid error term ε

captures variation due to unobserved circumstances and individual effort. The fact that

ε representes both fair (individual effort) and unfair (unobserved circumstances) deter-

minants of individual outcomes illustrates that the resulting measures of inequality of

opportunity have a lower bound interpretation.

Estimating yC is a prediction task in which the researcher tries to answer the following

question: What outcome yi do we expect for an individual that faces circumstances ωi?

This task is complicated by the fact that the precise form of f() is a priori unknown.

In the vast majority of empirical applications, researchers address this lack of knowledge

by invoking strong functional form assumptions. For example, they perform a log-linear

regression of the outcome of interest on the set of observed circumstances and construct

an estimate of yC from the predicted values:

ln(yi) = β0 +
P∑
p=1

βpω
p
i + εi, (4)
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ŷCi = exp

[
β0 +

P∑
p=1

β̂pω
p
i

]
, (5)

where ωpi ∈ Ω. The literature refers to this estimation procedure as the parametric

approach (Bourguignon et al., 2007; Ferreira and Gignoux, 2011).

Another common estimator of yC comes from an approach where the researcher par-

titions the sample into mutually exclusive types based on the realizations of all circum-

stances under consideration. An estimate of yC is then constructed from the average

outcome values within types:

ŷCi = µm(i) =
1

Nm

Nm∑
j=1

yj, ∀j ∈ tm, ∀tm ∈ T. (6)

The literature refers to this estimation procedure as the non-parametric approach (Checchi

and Peragine, 2010).

Both approaches face empirical challenges which are typically resolved by discretionary

decisions of the researcher. For example, the parametric approach assumes a log-linear im-

pact of all circumstances and therefore neglects the existence of interdependencies between

circumstances and other non-linearities. To alleviate this shortcoming the researcher may

integrate interaction terms and higher order polynomials into equation (4). However, such

extensions remain at her discretion. Reversely, the non-parametric approach does not re-

strict the interdependent impact of circumstances. However, if the data is rich enough in

information on circumstances, the researcher may be forced to reduce the observed cir-

cumstance space to obtain statistically meaningful estimates of the relevant parameters.

Assume for example, that the researcher observes ten circumstance variables with three

expressions each – a quantity easily observed in many household surveys. Implementing

the non-parametric approach would require the estimation of 310 = 59, 049 group means

which is hardly feasible given the sample sizes of most household surveys. The necessary

process of restricting the circumstance space again remains at the researcher’s discretion.

The previous discussion illustrates that common approaches leave the researcher to

her own devices when it comes to selecting the best model for estimating the distribution

yC . In this paper, we provide an automated solution to this problem. Similarly, Li Donni
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et al. (2015) propose the use of latent class modeling to obtain type partitions that allow

for estimates of yC according to the non-parametric procedure outlined in equation (6).

In their approach, observable circumstances are considered indicators of membership in

an unobservable latent type, tm. For each possible number of latent types, M , individuals

are assigned to types so as to minimize the within-type correlation of observable circum-

stances. Then the optimal number of types, M∗, is selected by minimizing an appropriate

model selection criterion such as Schwarz’s Bayesian Information Criterion (BIC). The

latent class approach therefore partly solves the issue of arbitrary model selection. How-

ever, it cannot solve the problem of model selection once the potential number of type

characteristics exceeds the available degrees of freedom. In such cases, the latent class

approach replicates the limitations of the parametric and the non-parametric approach:

the researcher must pre-select the relevant set of circumstances, their subpartition, and

the respective interactions. Furthermore, latent classes are obtained by minimizing the

within-type correlation of circumstances while ignoring the correlation of circumstance

variables with the outcome variable. As a consequence, they are not well-suited for cap-

turing the dependence between circumstances and a particular outcome of interest.

In the following we will show how the outlined shortcomings of existing approaches

can be addressed by regression trees and forests.

II ESTIMATING INEQUALITY OF OPPORTUNITY FROM

REGRESSION TREES AND FORESTS

Regression trees and forests belong to the class of supervised learning methods that were

developed to make out-of-sample predictions of a dependent variable based on a number

of observable predictors. As we will outline in the following, they can be straightforwardly

applied to inequality of opportunity estimations and solve the issue of model selection.

While there are many supervised learning methods to solve prediction problems, trees

and forests are particularly attractive in our setting since they are very flexible in ac-

counting for non-linearities and effective in excluding features that are unrelated to the

outcome of interest (Athey and Imbens, 2019). Moreover, in the context of inequality

of opportunity estimations they strike a balance between prediction accuracy and inter-
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pretability.5

First, we will introduce conditional inference regression trees. By providing predictions

based on identifiable groups, they closely connect to Roemer’s theoretical formulation of

inequality of opportunity. Furthermore, their simple graphical illustration is particularly

instructive for longitudinal or cross-sectional comparisons of opportunity structures. Sec-

ond, we will introduce conditional inference forests, which are – loosely speaking – a

collection of many conditional inference trees. While forests do not have the intuitive ap-

peal of regression trees, they perform better in terms of out-of-sample prediction accuracy

and hence provide better estimates of the counterfactual distribution yC .

Conditional Inference Trees

Tree-based methods obtain predictions for outcome y as a function of the input vari-

ables x = (x1, ..., xk). Specifically, they use the sample S = {(yi, xi)}Si=1 to divide the

population into non-overlapping groups, G = {g1, ..., gm, ..., gM}, where each group gm is

homogeneous in the expression of some input variables. These groups are called terminal

nodes or leafs in a regression tree context. The conditional expectation for observation

i is estimated from the mean outcome µ̂m of the group gm to which the ith observation

is assigned. Hence, in addition to the observed outcome vector y = (y1, ..., yi, ..., yN) one

obtains a vector of predicted values ŷ = (f̂(x1), ..., f̂(xi), ..., f̂(xN)), where

f̂(xi) = µ̂m(i) =
1

Nm

∑
j∈gm

yj, (7)

and Nm is the size of each group.

The mapping from regression trees to equality of opportunity estimation is straightfor-

ward. Conditional on the input variables being circumstances only, each resulting group

gm ∈ G can be interpreted as a circumstance type tm ∈ T. Furthermore, ŷ is analogous

to an estimate of the counterfactual distribution yC which in turn can be used for the

construction of ex-ante utilitarian measures of inequality of opportunity.

5Furthermore, it has been shown that many other ensemble methods show negligible gains in predic-
tion accuracy in comparison to random forests when applied to social science questions, e.g. see Blundell
and Risa (2019) for an example.
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Tree Construction. Regression trees partition the sample into M types by recursive

binary splitting. Recursive binary splitting starts by dividing the full sample into two

distinct groups according to the value they take in one input variable ωp ∈ Ω. If ωp is a

continuous or ordered variable, then i ∈ tl if ωpi < ω̃p and i ∈ tm if ωpi ≥ ω̃p, where ω̃p is a

splitting value chosen by the algorithm. If ωp is a categorical variable then the categories

can be split into any two arbitrary groups. The process is continued such that one of the

two groups is divided into further subgroups (potentially based on another ωq ∈ Ω), and

so on. Graphically, this division into groups can be presented like an upside-down tree

(Figure 1).

Figure 1: Exemplary Tree Representation

Note: Artificial example of a regression tree. The gray boxes indicate splitting points, while the white
boxes indicate terminal nodes. The values inside the terminal nodes show estimates for the conditional
expectation yC .

The exact manner in which the split is conducted depends on the type of regression

tree that is used. In this paper, we follow the conditional inference methodology proposed

by Hothorn et al. (2006). Conditional inference trees are grown by a series of permutation

tests according to the following procedure:6 First, they test the relationship between the

outcome variable and each circumstance variable in a univariate way. The circumstance

that is most related to the outcome is chosen as the potential splitting variable. Second,

if the dependence between the outcome and the splitting variable is sufficiently strong,

6See Appendix A.I for a precise statement of the algorithm.
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then a split is made. If not, no split is made. Whenever a circumstance can be split

in several ways, the sample is split into two subsamples such that the dependence with

the outcome variable is maximized. Third, this procedure is repeated in each of the two

subsamples until no circumstance in any subsample is sufficiently related to the outcome

variable. Note that the structure and depth of the resulting opportunity tree hinges

crucially on the level of α∗, i.e. the critical value for the permutation tests to reject

the null hypothesis. The less stringent the α∗-requirement, the more we allow for false

positives, i.e. the more splits will be detected as significant and the deeper the tree

will be grown. In our empirical application we fix α∗ = 0.01, which is in line with the

disciplinary convention for hypothesis tests. To illustrate the robustness of this choice

we show comparisons to setting α∗ = 0.05 and choosing α∗ through cross-validation in

Appendix Figure A.1.

Conditional Inference Forests

Regression trees solve the model selection problem outlined in section I and provide a

simple and standardized way of dividing the population into types. However, constructing

estimates for the counterfactual distribution yC from conditional inference trees suffers

from three shortcomings: first, the structure of trees – and therefore the estimate of the

relevant distribution yC – is fairly sensitive to alternations in the respective data samples.

This issue is particularly pronounced if there are various circumstances that are close

competitors for defining the first splits (Friedman et al., 2009). Second, trees assume a

non-linear data generating process that imposes interactions while ruling out the linear

influence of circumstances. On the one hand, this is fully consistent with Roemer’s theory

by which circumstances partition the population into types. On the other hand, the best

model for constructing ŷ may in fact be linear in some circumstances. Third, trees make

only limited use of the information inherent in the set of observed circumstances since

some of the circumstances ωp ∈ Ω are not used for the construction of the tree. However,

circumstances may possess informational content that can increase predictive power even

if they are not significantly associated with y at level a below α∗.

In what follows we will introduce conditional inference forests (Biau and Scornet, 2016;
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Breiman, 2001) which address all three of these shortcomings.

Forest Construction. Random forests create many trees and average over all of these

when making predictions. Trees are constructed according to the same procedure out-

lined in the previous subsection. However, two tweaks are made. First, given the sample

S = {(yi, ωi)}Si=1 each tree is estimated on a random subsample S ′ ⊂ S. In our case, we

randomly select half of the observations for each tree, and estimate B∗ such trees in total.

Second, only a random subset of circumstances {ωp ∈ Ω : p ∈ P̄ ⊂ {1, ..., P}} of size

P̄ ∗ is allowed to be used at each splitting point. Together these two tweaks remedy the

shortcomings of single conditional inference trees. First, averaging over the B∗ predictions

cushions the variance in the estimates of yC and smoothes the non-linear impact of cir-

cumstance characteristics. Second, drawing only on subsets of all circumstance variables

increases the likelihood that all observed circumstances with informational content will

be identified as the splitting variable ω∗ at some point.

Predictions are formed as follows:

f̂(ω;α∗, P̄ ∗, B∗) =
1

B∗

B∗∑
b=1

f̂ b(ω;α∗, P̄ ∗). (8)

Equation (8) illustrates that individual predictions are a function of α∗ – the significance

level governing the implementation of splits, P̄ ∗ – the number of circumstances to be

considered at each splitting point, and B∗ – the number of subsamples to be drawn from

the data. In our empirical illustration we fix B∗ = 200 and determine α∗ and P̄ ∗ by

minimizing the out-of-bag error (MSEOBB). Details on these choices and the empirical

procedures are disclosed in Appendix A.II.

III EMPIRICAL APPLICATION

In this section we provide an illustration of the machine learning approach using harmo-

nized survey data from 31 European countries. We will compare the results from trees

and forests with results from the prevalent estimation approaches in the extant literature;

namely parametric, non-parametric and latent class models. Comparisons will be made
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along two dimensions.

First, we evaluate the different estimation approaches by comparing their out-of-

sample mean squared error (MSE). The MSE provides a standard statistic to evaluate

the prediction quality of different models by representing the variance-bias trade-off. In

the context of constructing an estimate of the conditional income distribution yC , this

property is equivalent to trading-off upward and downward biases in inequality of op-

portunity estimates: The more parsimonious the model, the higher the prediction bias

(underfitting) and the stronger the downward bias in inequality of opportunity estimates.

The more complex the model, the higher the prediction variance (overfitting) and the

stronger the upward bias of inequality of opportunity estimates. A thorough illustration

of this mapping is provided in Appendix A.III.

Second, we compare the inequality of opportunity estimates emanating from the set

of benchmark methods to the ones from regression trees and forests.

In a last step, we illustrate how regression trees and forests can be used to analyze

opportunity structures in the population of interest.

Data

We base our empirical illustration on the 2011 wave of the European Union Statistics

on Income and Living Conditions (EU-SILC). EU-SILC provides harmonized survey data

with respect to income, poverty, and living conditions on an annual basis and covers a

cross-section of 31 European countries in the 2011 wave.7 For each country, EU-SILC

provides a random sample of all resident, private households. The data is collected by

the various national statistical agencies following common variable definitions and data

collection procedures. It provides the official reference source for comparative statistics

on income distribution and social inclusion in the European Union (EU) and therefore

provides a degree of harmonization that makes it particularly suitable for methodologi-

cal comparisons. We draw on the 2011 wave since it contains an ad-hoc module about

7The sample consists of Austria (AT), Belgium (BE), Bulgaria (BG), Switzerland (CH), Cyprus
(CY), Czech Republic (CZ), Germany (DE), Denmark (DK), Estonia (EE), Greece (EL), Spain (ES),
Finland (FI), France (FR), Croatia (HR), Hungary (HU), Ireland (IE), Iceland (IS), Italy (IT), Malta
(MT), Lithuania (LT), Luxembourg (LU), Latvia (LV), Netherlands (NL), Norway (NO), Poland (PL),
Portugal (PT), Romania (RO), Sweden (SE), Slovenia (SI), Slovak Republic (SK), and Great Britain
(UK).
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the intergenerational transmission of (dis)advantages which allows us to construct finely-

grained circumstance type partitions. The space of observed circumstances Ω and their

respective expressions are listed in Table 1. The list includes all variables of EU-SILC

containing information about the respondent’s characteristics at birth and their living

conditions during childhood. Descriptive statistics concerning circumstances are reported

in Supplementary Material A.

The unit of observation is the individual and the outcome of interest is equivalized

disposable household income. The latter is obtained by dividing household disposable

income by the square root of household size. Reported incomes refer to the year preced-

ing the survey wave, i.e. 2010 in the case of our empirical application. In line with the

literature we focus on equivalized household income as it provides the closest income ana-

logue to consumption possibilities and general economic well-being. Aware that inequality

statistics tend to be heavily influenced by outliers (Cowell and Victoria-Feser, 1996) we

adopt a standard winsorization method according to which we set all non-positive incomes

to 1 and scale back all incomes exceeding the 99.5th percentile of the country-specific in-

come distribution to this lower threshold. Our analysis is focused on the working age

population. Therefore, we restrict the sample to respondents aged between 30 and 59. To

assure the representativeness of our country samples all results are calculated by using

appropriate individual cross-sectional weights.

Table 2 shows considerable heterogeneity in the income distributions of the European

country sample. While the average households in Norway (NO) and Switzerland (CH)

obtained incomes above e40,000 in 2010, the average household income in Bulgaria (BG),

Romania (RO) and Lithuania (LT) did not exceed the e5,000 mark. The lowest inequality

prevails in the Nordic countries of Norway (NO), Sweden (SE) and Iceland (IS), all of

which have Gini coefficients below 0.220. At the other end of the spectrum we find the

Eastern European countries of Latvia (LV), Lithuania (LT) and Romania (RO) with Gini

coefficients well above 0.330.

Table 2 also shows the sample size for each country. These figures include observations

with missing values in one or more of the circumstances we use. The parametric approach,

the non-parametric approach, and latent class analysis handle missing values by listwise
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Table 1: List of Circumstances

1. Respondent’s sex:

- Male

- Female

2. Respondent’s country of birth:

- Respondent’s present country of residence

- European country

- Non-European country

3. Presence of parents at home∗:

- Both present

- Only mother

- Only father

- Without parents

- Lived in a private household without any
parent

4. Number of adults (aged 18 or more) in respon-
dent’s household∗

5. Number of working adults (aged 18 or more) in
respondent’s household∗

6. Number of children (under 18) in respondent’s
household∗

7. Father’s/mother’s country of birth and citizen-
ship:

- Born/citizen of the respondent’s present
country of residence

- Born/citizen of another EU-27 country

- Born/citizen of another European country

- Born/citizen of a country outside Europe

8. Father’s/mother’s education (based on the In-
ternational Standard Classification of Education
1997 (ISCED-97))∗:

- Unknown father/mother

- Illiterate

- Low (0-2 ISCED-97)

- Medium (3-4 ISCED-97)

- High (5-6 ISCED-97)

9. Father’s/mother’s occupational status∗:

- Unknown or dead father/mother

- Employed

- Self-employed

- Unemployed

- Retired

- House worker

- Other inactive

10. Father’s/mother’s main occupation (based on the
International Standard Classification of Occupa-
tions, published by the International Labour Of-
fice ISCO-08)∗:

- Managers (I-01)

- Professionals (I-02)

- Technicians (I-03)

- Clerical support workers (I-04)

- Service and sales workers (including also
armed force) (I-05 and 10)

- Skilled agricultural, forestry and fishery
workers (I-06)

- Craft and related trades workers (I-07)

- Plant and machine operators, and assem-
blers (I-08)

- Elementary occupations (I-09)

- Armed forces occupation (I-00)

- Father/mother did not work, was unknown
or was dead

11. Managerial position of the father/mother∗:

- Supervisory

- Non-supervisory

12. Tenancy status of the house in which the respon-
dent was living∗:

- Owned

- Not owned

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: Questions marked with ∗ refer to the period when the respondent was approximately 14 years old. Item 11 is missing for Finland. We
exclude subjective questions about the financial situation and the level of deprivation of the household of origin from the list of circumstances.

deletion. In contrast, conditional inference trees and forests make use of the full sample

by allowing for surrogate splits. For each splitting point ω̃∗, the algorithm searches for

an alternative splitting point ω̃+ that mimicks the sample partition of ω̃∗ to the greatest

extent. All observations that lack information on ω̃∗ are then allocated to subbranches
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Table 2: Summary Statistics

Equivalized Disposable Household Income

Country N µ σ Gini

AT 6,220 25,451 13,971 0.268
BE 6,011 23,291 10,948 0.249
BG 7,154 3,714 2,491 0.333
CH 7,583 42,208 24,486 0.279
CY 4,589 21,058 11,454 0.279
CZ 8,711 9,006 4,320 0.250
DE 12,683 22,221 12,273 0.276
DK 5,897 32,027 13,836 0.232
EE 5,338 6,922 3,912 0.330
EL 6,184 13,184 8,651 0.334
ES 15,481 17,088 10,597 0.329
FI 9,743 27,517 13,891 0.246
FR 11,078 24,299 14,583 0.288
HR 6,969 6,627 3,819 0.306
HU 13,330 5,327 2,863 0.276
IE 4,318 24,867 14,307 0.296
IS 3,684 22,190 9,232 0.210
IT 21,070 18,786 11,730 0.309
LT 5,403 4,774 3,150 0.344
LU 6,765 37,911 19,977 0.271
LV 6,423 5,334 3,618 0.363
MT 4,701 13,006 6,747 0.277
NL 11,411 25,210 11,414 0.235
NO 5,026 43,260 16,971 0.202
PL 15,545 6,103 3,690 0.316
PT 5,899 10,781 7,296 0.334
RO 7,867 2,562 1,646 0.337
SE 6,599 26,346 10,700 0.215
SI 13,183 13,772 5,994 0.225
SK 6,779 7,304 3,416 0.257
UK 7,391 25,936 16,815 0.320

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: N indicates the total number of observations in the respective country sample. The last three
columns refer to the country-specific distribution of equivalized disposable household incomes measured in
e. µ indicates the mean, σ the standard deviation, and the last column shows inequality as measured by
the Gini coefficient.

based on ω̃+. As a consequence, there are differences in the actual sample sizes that are

available for the different methods. When comparing inequality of opportunity estimates

across methods, we tolerate these differences in sample sizes since we want to compare

inequality of opportunity estimates by respecting all methods to the greatest extent. To

the contrary, when comparing the out-of-sample performance we use the smallest sample

size across methods for all calculations, such that the relative out-of-sample performance

cannot be driven by sample size differences or non-random attrition through listwise

deletion. A thorough discussion of the sensitivity of all methods to different sample sizes

is provided in Appendix A.IV.
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Benchmark Methods

We compare our estimates from trees and forests against three benchmark methods that

have been proposed in the extant literature.

First, we draw on the parametric approach as proposed by Bourguignon et al. (2007)

and Ferreira and Gignoux (2011). In line with equation (4), estimates are obtained by

a Mincerian regression of equivalent household income on the following circumstances:

father’s occupation (10 categories), father’s and mother’s education (5 categories), area

of birth (3 categories), and tenancy status of the household (2 categories). The model

specification therefore includes 20 binary variables and resembles the specification used

in Palomino et al. (2019).

Second, we draw on the non-parametric approach as proposed by Checchi and Peragine

(2010). In line with equation (6), non-parametric estimates are obtained by calculating

average outcomes in non-overlapping circumstance types. In this application we construct

40 such types. Individuals in type tm are homogeneous with respect to the educational

achievement of their highest educated parent (5 categories) as well as their migration

status (2 categories). The latter is indicated by a binary variable for whether the respon-

dent is a first or second generation immigrant. Furthermore, they have fathers working

in the same occupation (4 categories). To minimize the frequency of sparsely populated

types we divert from the occupational list given in Table 1 by re-coding occupations

into the following categories: high-skilled non-manual (I-01–I-03), low-skilled non-manual

(I-04–I-05 and I-10), skilled manual and elementary occupation (I-06–I-09), and unem-

ployed/unknown/dead. This partition is similar but more parsimonious than the one

used in Checchi et al. (2016) who base their analysis on a total of 96 types. Notably, in

contrast to Checchi et al. (2016) we exclude age from the list of circumstances since it is

fairly controversial whether age qualifies as a circumstance characteristic in the relevant

sense.

Lastly, we compare our estimates against the latent class approach as proposed by

Li Donni et al. (2015). The eligible set of circumstances is the full set of observable

circumstances. For the latent class analysis, we follow Li Donni et al. (2015) and select

the number of latent types by minimizing BIC.
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Model Performance

In order to assess the prediction accuracy of different models, we follow the machine

learning practice of splitting our sample into a training set with i−H ∈ {1, ..., N−H} and

a test set with iH ∈ {1, ..., NH}. For each country in our sample, N−H = 2
3
N while

NH = 1
3
N . We fit our models on the training set and compare their performance on the

test set according to the following procedure:

1. Run the chosen models on the training data (for the specific estimation procedures,

see section II for trees and forests, and section III for our benchmark methods).

2. Store the prediction functions f̂−H().

3. Calculate the mean squared error in the test sample:

MSETest = 1
NH

∑
i∈H [yi − f̂−H(ωi)]

2.

Figure 2 compares the resulting MSETest of the different models. For each country,

MSETest of random forests is standardized to equal 1, such that an MSETest larger than

1 represents a worse out-of-sample fit. This implies that the respective method performs

worse than forests in trading off upward and downward bias – either by making poor use

of circumstance information or overfitting the data. We derive 95% confidence intervals

based on 200 bootstrapped re-samples of the test data using the normal approximation

method (DiCiccio and Efron, 1996).

Random forests outperform all other methods in all cases. On average, the parametric

approach gives a fit that is 9.4% worse than forests (Figure 2, Panel (a)). This aver-

age, however, masks considerable heterogeneity. While the relative test error for Cyprus

only slightly exceeds the 3%-mark, the test error of the parametric model for Denmark

and Sweden exceed the benchmark method by more than 20%. For all countries, the

benchmark MSE lies outside the 95% confidence band of the parametric approach.

With average shortfalls of around 3%, out-of-sample prediction errors are less pro-

nounced for the non-parametric (Figure 2, Panel (b)) and latent class models (Figure 2,

Panel (c)). Yet, as in the case of the parametric approach, MSETest statistics of condi-

tional inference forests lie outside the 95% confidence band of the respective method for
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Figure 2: Comparison of Models’ Test Error
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(b) Non-Parametric Approach
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(c) Latent Class Analysis
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(d) Conditional Inference Tree
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).

Note: The y-axis shows the MSETest of the different estimation approaches relative to the benchmark of random forests. MSETest for random
forests is standardized to 1, such that a relative test error > 1 indicates worse fit than random forests. 95% confidence intervals are derived
based on 200 bootstrapped re-samples of the test data using the normal approximation method. For better result visibility Sweden is excluded
from the figure since it is an outlier. The test errors for Sweden are 1.43 [1.21, 1.66] for the parametric approach, 1.11 [1.01, 1.21] for the
non-parametric approach, 1.06 [1.02, 1.11] for latent class analysis, and 1.06 [1.01, 1.11] for conditional inference trees.

the vast majority of the country cases in our sample. Hence, relative to random forests,

the benchmark methods either underutilize or overutilize the information contained in

Ω. As we will see in section III, the parametric and the non-parametric models are over-

fitting the data and are therefore upward biased. To the contrary, the type partition

delivered by latent class analysis tends to be too coarse and therefore downward biased.

The relatively good performance of the non-parametric approach could suggest that it

is a sustainable alternative to forests. However, since the model specification remains

under the discretion of the researcher, this performance is a luck of the draw rather than

a property inherent to the estimation approach. In this particular case, had we followed
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the specification of Checchi et al. (2016) exactly by incorporating age as a circumstance

characteristic, the type partition would more than double and be accompanied with a

significant deterioration in the out-of-sample performance (see section III).

On average, conditional inference trees are closest to the test error rate of forests. With

the exception of two country cases, the test error of trees exceeds the test error of forests

by less than 5%. Yet, as outlined in section II, they also fall short of the performance of

forests due to their poorer utilization of the information given in Ω.

We conclude that among all considered methods, conditional inference forests deliver

the highest out-of-sample prediction accuracy. Hence, they perform best in trading off

upward and downward bias in inequality of opportunity estimations. One may suspect

that other machine learning algorithms perform even better in predicting outcomes out-

of-sample. However, we note that in social science applications the gain in prediction

accuracy is typically small when alternating between algorithms that allow for sufficient

model flexibility. For example, in the context of intergenerational mobility estimations

Blundell and Risa (2019) show that there is no difference in the performance of random

forests, neural nets and gradient boosted trees.8 To demonstrate the substantive relevance

of this property, we now turn to a comparison of the equality of opportunity estimates

emanating from the considered set of estimation approaches.

Estimates of Inequality of Opportunity

Figure 3 maps inequality of opportunity for our European country sample in 2010. In-

equality of opportunity estimates are obtained by calculating the Gini index in the esti-

mated counterfactual distribution ŷC , where the latter is constructed from the predictions

of conditional inference forests.9 We observe a clear North-South gradient with the Scan-

dinavian countries being characterized by the lowest level of inequality of opportunity.

Similarly, we observe a slight East-West gradient with many countries from the former

8Although it is not explicitly part of our methodological comparison, we provide the exact time
necessary to run a single iteration for all countries for each method in the following. (i) Non-parametric
approach: 2.45 seconds, (ii) Parametric approach: 1.55 seconds, (iii) Latent class analysis: 1.02 hours,
(iv) conditional inference trees: 39.14 seconds, (v) conditional inference forests: 2.06 hours. The run
times are measured for a computer with a of 2.3 GHz Intel Core i5 central processor.

9As discussed in section I, there is a class of functionals that can be used to summarize the distribution
of ŷC . We therefore provide estimates for alternative inequality indexes in Supplementary Material B.
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Warsaw pact being characterized by higher levels of inequality of opportunity. Notable

exceptions are Czech Republic and Slovakia.

Figure 3: Inequality of Opportunity in Europe, 2010

0.05 0.10
IOP

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).

Note: Inequality of opportunity is measured by the Gini coefficient in the estimated counterfactual distribution ŷC . ŷC is constructed based
on the predictions from conditional inference forests. Darker shaded colors indicate higher levels of inequality of opportunity. The displayed
inequality of opportunity estimates are reported in the last column of Table A.2.

It is important to emphasize that the results of the random forests cannot be in-

terpreted as recovering the truth. However, they provide a benchmark estimate since

forests have the lowest test error for all countries, therefore perform best in balancing

concerns about upward and downward bias, and hence provide the best approximation of

the truth among all methods we consider. Following this insight, Figure 4 plots inequality

of opportunity estimates based on each method relative to the estimates from conditional

inference forests on a logarithmic scale.10 For each country- and method-specific estimate

10Note that the ranking of countries in terms test error rates shown in Figure 2 does not necessarily
correspond to the ranking of countries in in terms of the equality opportunity estimates shown in Figure
4. This fact is a consequence of restricting the sample to the smallest available data sample across
methods for the assessment of the model performance. See the last paragraph of section III for a detailed
explanation.
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we divide by the estimate from random forests to obtain the relative divergence between

the respective benchmark and our preferred method. This implies that, for a given coun-

try, inequality of opportunity estimates larger than those obtained from forests overfit the

data and vice versa. An overview table of the underlying point estimates including 95%

confidence bands is disclosed in Appendix A.V.

Figure 4: Comparison of Estimates by Method

(a) Parametric Approach

−50%

−33%

0

+50%

+100%

+200%

+300%

FR
 DE

LU
 AT

HU
 CH

PT
 EE

PL
 BG

CY
 ES

LV
 BE

MT
 IT

UK
 IE

EL
 SK

CZ
 LT

RO
 HR

NO
 SI

FI
 NL

SE
 DK

IS
 AVG

In
eq

ua
lit

y 
of

 o
pp

or
tu

ni
ty

 e
st

im
at

e 
re

la
tiv

e 
to

 fo
re

st
s

(b) Non-Parametric Approach
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(c) Latent Class Analysis
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(d) Conditional Inference Tree
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: In each panel, the y-axis shows the inequality of opportunity estimate from the method in question divided by the inequality of oppor-
tunity estimate from forests, displayed on a logarithmic scale. Country-estimates above the black line indicate an overestimation of inequality
of opportunity relative to the random forest benchmark. Reversely, country-estimates below the black line indicate an underestimation of in-
equality of opportunity relative to the random forest benchmark. For all methods inequality of opportunity is measured by the Gini coefficient

in the estimated counterfactual distribution ŷC .

Panel (a) plots the estimates from the parametric approach relative to the forest esti-

mates. For 28 out of 31 countries the inequality of opportunity estimates are higher than

the results from conditional inference forests. The given specification of the parametric

approach inflates inequality of opportunity statistics by 47% on average. The most pro-
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nounced overstatement is observed for Iceland where the parametric approach yields an

estimate more than four times higher than the forest analogue. Similarly, the figures of

Sweden and Denmark are inflated by a factor of 3.8. Also in terms of country rankings,

the parametric approach delivers markedly different results in comparison to our pre-

ferred method. While the parametric approach identifies Romania (RO), Bulgaria (BG)

and Greece (EL) as the countries in which opportunities are most unequally distributed,

these countries rank 6th, 2nd and 7th in the case of forests.

Panel (b) illustrates that the benchmark specification of the non-parametric approach

takes a middle-ground between the parametric approach and our preferred method. For

19 out of 31 countries the non-parametric estimate exceeds its forest-based analogue. The

non-parametric specification inflates inequality of opportunity statistics at a rate of 18%

on average. Also in terms of country rankings the non-parametric approach shows a much

closer resemblance to our preferred method than the parametric approach. For example, it

identifies Bulgaria (BG), Portugal (PT) and Luxembourg (LU) as the countries in which

opportunities are most unequally distributed. This ranking is congruent with the top

three countries identified by forests. However, the resemblance should be interpreted as

a luck of the draw rather than a property inherent to the estimation approach. Under

alternative type partitions the estimates from the non-parametric approach may diverge

much more strongly than under the partition adopted in this work.

As shown in Panel (c), the latent class model tends to provide lower estimates than

the previous methods. For 22 out of 31 countries the latent class estimate falls short of

the forest-based estimate. Given the set of observed circumstances latent class analysis

understates inequality of opportunity by 6% on average. The most pronounced under-

statement of inequality of opportunity is observed for Belgium and Germany. For these

countries the latent class model provides estimates more than 40% lower than the forest-

based analogues. However, in spite of the tendency to underestimate, there remain four

countries for which latent class analysis overstates inequality of opportunity by more than

50% relative to the forest benchmark. Also in terms of country rankings the latent class

approach differs markedly from our preferred method. It identifies Romania (RO), Greece

(EL) and Portugal (PT) as the countries in which opportunities are most unequally dis-
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tributed, whereas these countries rank 6th, 7th and 3rd in the case of forests.

Finally, Panel (d) shows that trees and forests tend to produce similar results. The

correlation between estimates is high (0.98) and in contrast to all other approaches there

is no general tendency to over- or underestimate inequality of opportunity relative to

random forests. In view of the discussed shortcomings of trees, it is unsurprising that

some estimates divert from their forest-based analogues. However, even the most notable

outliers – Finland at the lower end, and the Netherlands at the upper end – remain well

below the extrema of the benchmark methods considered previously.

To summarize: according to our benchmark specifications the parametric and the

non-parametric approach tend to overestimate inequality of opportunity. To the contrary,

estimates based on latent class analysis tends to underestimate inequality of opportunity.

The poor out-of-sample replicability of standard estimation approaches in conjunction

with the large divergences of their inequality of opportunity estimates from approaches

that perform better in the first dimension, illustrate the importance of appropriate model

specifications when comparing societies with respect to their need for opportunity equal-

izing policy interventions.

Opportunity Structure

Endowed with an estimate of inequality of opportunity, adequate policy responses must

be informed by the opportunity structure of a society. Policymakers want to learn about

the particular circumstance characteristics which drive the existence of inequality of op-

portunity. In this section we illustrate such analyses for both trees and forests. To keep

the analysis intelligible we restrict ourselves to two interesting country cases: Sweden and

Germany. Readers interested in the opportunity structures of the remaining 29 countries

are referred to Supplementary Material C.

We are careful to emphasize that one cannot ascribe any causality to our estimates.

However, in spite of the correlative nature of the displayed opportunity structures, they

may provide useful starting points for decisionmakers to locate policy areas for opportu-

nity equalizing reforms or to stimulate further academic investigation by means of detailed

decomposition or causal analyses (Fortin et al., 2011). In the case of trees, it is also worth-
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while to keep in mind that their structure remains rather sensitive to small perturbations

of the data. In this application, however, tree structures are affirmed by variable impor-

tance calculations based on forests which are less sensitive to such perturbations. This

validation is a tentative confirmation that graphical tree representations can serve as

useful starting points for the analysis of opportunity structures.

Trees. Figure 5 illustrates that the opportunity structure of Sweden can be summarized

by a tree with two terminal nodes. Inequality of opportunity in Sweden is due to marked

differences between first-generation immigrants born outside of Europe and the collective

group of native residents and European immigrants. The former group accounts for about

10% of the population and on average obtains an equivalent household income that is 26%

lower than the corresponding income of the latter group. The between-type Gini is 0.025

or about 12% of total inequality. We note that our estimates differ from Björklund et al.

Figure 5: Opportunity Tree (Sweden)

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II).
The set of observed circumstances Ω used to construct the conditional inference tree
is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as
well as the p-value associated with the respective split. The first number inside the
terminal nodes indicates the population share belonging to the circumstance type,
while the second number shows the respective estimate of the conditional expecatation

yC .

(2012a) who use Swedish registry data to estimate inequality of opportunity at about 28%

of total inequality. These estimates, however, are not strictly comparable to ours since

Björklund et al. (2012a) focus on a younger (32-38) male-only sample and market income

instead of disposable household income.

A different picture arises when considering Germany. Parental occupation, parental
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education, migration status, the number of working adults in the household, and parental

tenancy status interact in creating a complex tree made of 14 splits and 15 terminal nodes.

The null hypothesis of equality of opportunity is most firmly rejected for individuals whose

fathers work in different occupations. If a respondent’s father worked in one of the higher

ranked occupations (I-01–I-05), the individual belongs to a more advantaged circumstance

type than otherwise (Terminal nodes 5-10). These types together account for 37.4% of the

population and have an average outcome of e26,380 – far above the population average

of e22,221. However, the advantage of this circumstance characteristic is contingent on

the educational status of the father. If a respondent’s father had no or low education, the

offspring earned less (e21,390) than the country average in spite of the fact that fathers

made a career in a high-rank occupation. Conditional on the father both being highly

educated and working in a high-rank occupation, the intra-household division of labor

plays an important role. On the one hand, those individuals coming from single-earner

households in which the mother stayed at home are the most advantaged circumstance

types of Germany in 2010 – especially so if their father worked as a manager or professional

(Terminal nodes 5 and 6). On the other hand, offspring of double-earner households tend

to be differentiated by their migration status. Comparing terminal nodes 8 and 9 we

learn that the advantage of coming from a highly-educated double-earner household is

substantially diminished from e25,718 to e22,808 if the respondent’s father was born

outside of Germany. A similar distinction based on migration status can be observed

on the right-hand side of the tree, in which individuals were born to fathers with a

lower occupational status (I-05–I-00). Individuals in this group lived in above average

income households if both of their parents were fairly educated and their father had no

migration background (Terminal node 14). This advantage again vanishes substantially

if the respondent’s father was born outside of Europe (Terminal node 15).

There is marked heterogeneity in tree structures across countries (Supplementary Ma-

terial C). For the remaining countries in our sample, terminal nodes range from three

(Denmark, Iceland and Norway) to 27 (Italy). It is noteworthy that the rank-rank corre-

lation between the number of terminal nodes and the inequality of opportunity estimates

presented in section III is positive but not perfect. Whether a split is conducted is a func-
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tion of the average income difference and the sample size of the ensuing types. Hence, if

the sample size is large enough, the statistical tests underlying the splitting algorithm have

sufficient power to detect even minor differences in average incomes across groups. Such

small differences, however, have little impact on inequality in the estimated counterfactual

distribution ŷC .

Forests. Forests cannot be analyzed in the straightforward graphical manner of trees.

However, we can use variable importance measures to assess the impact of circumstance

variables for the construction of opportunity forests. One measure of variable importance,

as proposed by Strobl et al. (2007), is obtained by permuting input variable ωp such that its

dependence with y is lost. After this, the out-of-bag error rate MSEOOB is re-computed.

The increase of MSEOOB in comparison to the baseline out-of-bag error indicates the

importance of the input variable for prediction accuracy. Repeating this procedure for all

ωp ∈ Ω affords a relative comparison of the importance of all circumstances.

Figure 7 shows the results from this procedure for our example cases of Germany and

Sweden. Each black dot is the importance of one of the variables in the set of observed

circumstances Ω. We standardize the ensuing results such that the variable importance

measure for the circumstance with the greatest impact in each country equals one. For the

case of Sweden birth area is the only circumstance that has a meaningful predictive value.

In Germany, father’s occupation and father’s education are most important, followed by

the number of working adults in the household and mother’s education.

It is reassuring that these findings are in line with the graphical analysis of opportunity

trees. In Supplementary Material C we show variable importance plots for all countries

in our sample as well maps that group countries by their most important circumstance

variable. Broadly, we can divide our country sample into three groups according to

the circumstances that determine their opportunity structure. First, there is a handful

of primarily Nordic countries where the respondent’s birth area is the most important

circumstance. Second, there is a large group of primarily Western and Southern European

countries where father’s occupation and father’s education are most important. Third,

there is a group of Eastern European countries where mother’s education and occupation

are most important.
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Figure 7: Variable Importance for Germany and Sweden
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: Each dot shows the importance of a particular circumstance variable ωp. Variable importance is measured

by the decrease in MSEOOB after permuting ωp such that it is orthogonal to y. The importance measure is
standardized such that the circumstance with the greatest importance in each country equals 1. The forests are
constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used to
construct the conditional inference tree is detailed in Table 1.

These results have important implications for analyses that use inequality of opportu-

nity estimates as left-hand side variables. Researchers have become increasingly interested

in the opportunity equalizing properties of specific policy reforms (e.g. Andreoli et al.,

2019). Our results suggest that a one-size-fits-all approach is insufficient to capture the

underlying opportunity structures in different societies. Hence, one should be cautious in

comparing equality of opportunity estimates based on the same model within a particular

country before and after a change in institutional configurations due to a policy reform.

While the coefficients on particular circumstance characteristics may change in the course

of a reform, the relevant model f() may change as well. Therefore, to the extent that

researchers are interested in the aggregate opportunity-equalizing effect of a particular

reform, they need to take both of these channels into account.

IV CONCLUSION

In this paper we propose the use of conditional inference trees and forests to estimate

inequality of opportunity. Both estimation approaches minimize arbitrary model selec-

tion by the researcher while trading off downward and upward biases in inequality of
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opportunity estimates. Conditional inference forests outperform all methods considered

in this paper in terms of their out-of-sample performance. Hence, they deliver the best

estimates of inequality of opportunity. Conditional inference trees, on the other hand,

are econometrically less complex and provide a handy graphical illustration that can be

used to analyze opportunity structures. The fact that trees are very close to forests in

terms of their out-of-sample performance, their inequality of opportunity estimates, and

the importance they assign to specific circumstances makes us confident that they are

a useful tool for communicating issues related to inequality of opportunity to a larger

audience.

To be sure, the development of machine learning algorithms and their integration into

the analytical toolkit of economists is a highly dynamic process. We are well aware that

finding the best machine learning algorithm for inequality of opportunity estimations

is a methodological horse race with frequent entry of new competitors that eventually

will lead to some method outperforming the ones employed in this work. Therefore, the

main contribution of this work should be understood as paving the way for new methods

that are able to handle the intricacies of model selection for inequality of opportunity

estimations. A particularly interesting extension may be the application of local linear

forests (Friedberg et al., 2018) that outperform more traditional forest algorithms in their

ability to capture the linear impact of particular predictor variables.

Finally, while we restricted ourselves to ex-ante utilitarian measures of inequality of

opportunity, the exploration of these algorithms for other methods in the inequality of

opportunity literature, such as ex-post measures à la Pistolesi (2009) or ex-ante and

ex-post tests à la Kanbur and Snell (2019) and Lefranc et al. (2009), provides another

interesting avenue for future research.
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A APPENDIX

A.I Conditional Inference Algorithm

0. Choose a significance level α∗.

1. Test the null hypothesis of density function independence: Hωp

0 : D(Y |ωp) = D(Y ),

for all ωp ∈ Ω, and obtain a p-value associated with each test, pω
p
.

⇒ Adjust the p-values for multiple hypothesis testing, such that pω
p

adj. = 1− (1−

pω
p
)P (Bonferroni Correction).

2. Select the variable ω∗ with the lowest p-value, i.e.

ω∗ = argmin
ωp
{pωpadj. : ωp ∈ Ω, p = 1, ..., P}.

⇒ If pω
∗

adj. > α∗: Exit the algorithm.

⇒ If pω
∗

adj. ≤ α∗: Continue, and select ω∗ as the splitting variable.

3. Test the null hypothesis of density function independence between the subsamples

for each possible binary partition splitting point s based on ω∗ and obtain a p-value

associated with each test, pω
∗
s .

⇒ Split the sample based on ω∗, by choosing the splitting point s that yields the

lowest p-value, i.e. ω̃∗ = argmin
ω∗s
{pω∗s : ω∗s ∈ Ω}.

4. Repeat steps 1.–3. for each of the resulting subsamples.

A.II Empirical Choices

Tuning of Trees. Alternatively to specifying α∗ a priori, it can be chosen by K-fold

cross-validation (CV), which – under some minimal assumptions (Friedman et al., 2009)

– provides unbiased estimates of the out-of-sample MSE. To perform cross-validation, one

starts by splitting the sample into K roughly equal-sized folds. Then, one implements

the conditional inference algorithm on the union of K − 1 folds for varying levels of α,

while leaving out the kth subsample. This makes it possible to compare the predictions
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emanating from the K − 1 folds with the unused data points observed in the kth fold.

One then calculates the out-of-sample MSE as a function of α:

MSECV
k (α) =

1

Nk

∑
i∈k

(yki − f̂−k(ωi;α))2, ωi ∈ Ω, i ∈ N, (9)

where f̂−k() denotes the estimation function f̂() constructed while leaving out the kth

fold. Note that every fold may render a new f̂(). This exercise is repeated for all K folds,

so that MSECV(α) = 1
K

∑
k MSECV

k (α). One then chooses α∗ such that

α∗ = argmin
α
{MSECV(α) : α ∈ (0, 1)}. (10)

Figure A.1 reveals that selecting α∗ based on cross-validation or setting α∗ = 0.05 has

little bearing on our results.

Figure A.1: Tuning Conditional Inference Trees
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).

Note: The y-axis shows the MSETest for different specifications of α∗ relative to the baseline

specification of α∗ = 0.01. The MSETest for the baseline specification of α∗ = 0.01 is standardized
to 1, such that a relative test error > 1 indicates worse fit than the baseline specification. 95%
confidence intervals are derived based on 200 bootstrapped re-samples of the test data using the
normal approximation method. When no confidence intervals are shown, the methods give the same

MSETest. Trees are constructed by the conditional inference algorithm (Section II). The set of
observed circumstances Ω used to construct the conditional inference trees is detailed in Table 1.
For the construction of MSETest, see section III. Black dots and the associated confidence bands
show results for α∗ = 0.05. Orange dots and the associated confidence bands show results for
cross-validated α∗ using K = 5 folds.

Tuning of Forests. The grid of parameters (α, P̄ , B) can be imposed a priori by the

researcher or tuned to optimize the out-of-sample fit of the model. In our empirical

illustration we proceed as follows. First, to reduce computational costs we fix B∗ at a

level at which the marginal gain of drawing an additional subsample in terms of out-of-

sample prediction accuracy becomes negligible. Empirical tests show that this is the case
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Figure A.2: Optimal Size of Forests
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Note: The x-axis shows the parameter value for B∗, i.e. the number of trees per forest. The

dots show the MSEOOB obtained from estimating a random forest with the given number of trees
for the case of Germany. We allow for 6 circumstances to be considered at each splitting point
(P̄∗ = 6). Due to the randomness in the observations selected for each tree and the randomness
in the circumstances allowed at each splitting point, even when estimating multiple forests with

the same number of trees, the associated MSEOOB will differ. The blue line is a non-parametric

fitted line of the MSEOOB estimates and the shaded area the 95% confidence interval of this line.
Evidently, as the tree size approaches 200, on expectation, the MSEOOB stops improving much.

with B∗ = 200 for most countries in our sample (Figure A.2).

Second, we determine α∗ and P̄ ∗ by minimizing the out-of-bag error. This entails the

following three steps for a grid of values of α and P̄ :

1. Run a random forest with B∗ subsamples, where P̄ circumstances are randomly

chosen to be considered at each splitting point, and α is used as the critical value

for the hypothesis tests.

2. Calculate the average predicted value of observation i using each of the prediction

functions estimated in the subsamples B−i := {S ′ ⊂ S : S ′ ∩{(yi, ωi)} = ∅ } (the so

called bags) in which i does not enter: f̂OOB(ωi;α, P̄ ) = 1
NB−i

∑
S′∈B−i f̂

S′(ωi;α, P̄ ).

3. Calculate the out-of-bag mean squared error:

MSEOOB(α, P̄ ) = 1
N

∑
i [yi − f̂OOB(ωi;α, P̄ )]2.

One then chooses the combination of parameter values that delivers the lowest MSEOOB:

(α∗, P̄ ∗) = argmin
α,P̄

{MSEOOB : (α, P̄ ) ∈ (0, 1)× P̄}. (11)

The logic behind this tuning exercise is similar to cross-validation. However, instead of

leaving out the kth fraction of the dataset to make out-of-sample predictions, we leverage
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the fact that each tree of a forest is grown on a subsample S ′ ⊂ S that excludes some

observations i ∈ {1, ..., S}. Hence, for each tree we can use the out-of-bag data points to

evaluate the predictive accuracy of the respective model. Using this out-of-bag procedure,

the optimal level of α is often very high, meaning that the trees are grown very deep. At

the limit, α may be set to 1, in which case splits are made as long as each end node has

at least a minimum number of observations. If we were to extract a single tree from such

a forest, then this tree would surely overfit the data and perform poorly out-of-sample.

However, when averaging over many overfitted trees this drawbacks gets remedied. Hence,

setting α∗ = 1 a priori is a sensible strategy to reduce the computational cost of random

forests.
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A.III Upward Bias, Downward Bias and the MSE

A standard statistic adopted to assess prediction accuracy is the mean squared error

(MSE):

MSE = ES [(y − f̂(ω))2], (12)

where y is the observed outcome and f̂(ω) the estimator of the individual’s conditional

expectation E(y|ω) in a random sample S. The MSE can be decomposed into three

components (Friedman et al., 2009):

MSE = Var(f̂(ω)) + ES [f(ω)− f̂(ω)]2 + Var(ε), (13)

= Var(f(ω)− f̂(ω))︸ ︷︷ ︸
(1)

+ (f(ω)− ES [f̂(ω)])2︸ ︷︷ ︸
(2)

+ Var(ε)︸ ︷︷ ︸
(3)

. (14)

In the literature on statistical learning this is referred to as the bias-variance decom-

position. Components (1) and (2) can be directly linked to concerns of upward and

downward biases in inequality of opportunity estimates. To illustrate this point, notice

that we minimize (1) by imposing the following model specification y = f̂(ω)+ ε = β0 + ε.

This model specification assumes that individual outcomes are best predicted by the

sample mean µS . For the sake of illustration, furthermore assume that each population

sample S is large enough such that its mean corresponds to the underlying population

truth: µS = µ. Obviously, this is a stark assumption which we only make for illustration

purposes. In reality, there will always be some variance in the sample means as long as

one does not capture the entire underlying population. As a consequence, (1) drops out

and the MSE is entirely captured by components (2) and (3):

MSE = Var(f(ω)− f̂(ω)) + (f(ω)− ES [f̂(ω)])2 + Var(ε)

= (f(ω)− µ)2 + Var(ε).

This shows that the variance-minimizing model is established by the assumption that

everybody in the population faces exactly the same circumstance set, i.e. ωi = 1 ∀i ∈

N – and hence that the value of every individual opportunity set is best estimated by

the sample mean µS . Under the given assumptions, the model cannot give an upward

biased estimate of inequality of opportunity since it is restricted in a way that does not
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allow for any role of circumstance characteristics in the explanation of individual outcome

differences. In fact, for any functional I() that satisfies the measurement criteria outlined

in section I, I(ŷC) = 0.

Reversely, one could ask which model would minimize component (2) of the MSE. To

this end, we would have to specify a complex model that allows for the full set of relevant

circumstances, their mutual interactions and non-linearities such that in expectation we

would obtain unbiased estimates of f(ω). In this case the MSE would be entirely captured

by components (1) and (3):

MSE = Var(f(ω)− f̂(ω)) + (f(ω)− ES [f̂(ω)])2 + Var(ε),

= Var(f(ω)− f̂(ω)) + Var(ε).

While such a model in expectation provides unbiased estimates of yC , the conditional

expectations within a particular sample S may be estimated with error: ŷCi =yCi +ui. ui is

an iid error the importance of which tends to increase with model complexity (Friedman

et al., 2009). Hence, model complexity leads to measurement error which in turn inflates

the variance of ŷC in comparison to the underlying truth: Var(ŷC) = Var(yC)+Var(u). As

shown in Brunori et al. (2019), applying any functional I() that satisfies the measurement

criteria outlined in section I to the variance inflated distribution ŷC results in upward

biased estimates of inequality of opportunity.
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A.IV Sensitivity to Sample Size

Table A.1 shows the country sample sizes from our empirical application (Section III) by

estimation method. Note that the parametric and the non-parametric approach tend to

have smaller sample sizes since they rely on list-wise deletion of observations in case of

item non-response.

Table A.1: Sample Size by Method

Country
Parametric
Approach

Non-
parametric
Approach

CI Forests and
Trees

AT 6,042 6,107 6,220
BE 4,528 5,375 6,011
BG 5,952 6,210 7,154
CH 6,420 6,754 7,583
CY 4,483 4,525 4,589
CZ 6,438 6,524 8,711
DE 10,539 11,139 12,683
DK 2,107 2,223 5,897
EE 4,857 5,004 5,338
EL 5,743 5,862 6,184
ES 14,640 14,816 15,481
FI 2,900 3,207 9,743
FR 10,104 10,391 11,078
HR 5,945 6,159 6,969
HU 12,139 12,525 13,330
IE 3,080 3,138 4,318
IS 1,447 1,492 3,684
IT 20,238 20,800 21,070
LT 4,539 4,703 5,403
LU 6,528 6,654 6,765
LV 6,046 6,192 6,423
MT 4,048 4,117 4,701
NL 5,414 5,518 11,411
NO 2,329 2,400 5,026
PL 12,676 13,182 15,545
PT 5,689 5,795 5,899
RO 5,701 6,145 7,867
SE 467 561 6,599
SI 4,691 4,747 13,183
SK 6,170 6,401 6,779
UK 5,756 5,922 7,391
Minimum (Nmin) 467 561 3,684

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: Each column refers to the number of observations used in the estimation of inequality of opportunity
for the particular approach.

To analyze the extent to which inequality of opportunity estimates are a function of

sample sizes we rely on the following procedure.

1. For each country-method cell we make 10 random draws from the full country

sample. The size of each subsample is determined by the smallest method-specific

country sample: Nmin
trees = Nmin

forests = 3, 684, Nmin
non-parametric = 561 and Nmin

parametric = 467.

2. We estimate inequality of opportunity on each of the 10 subsamples and average

over these 10 iterations to obtain an estimate for each country-method cell.
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Figure A.3 plots the estimates based on the full sample against the estimates from the

subsamples as derived from the procedure outlined above.

Figure A.3: Inequality of opportunity with full sample and random subsamples
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(b) Non-Parametric Approach
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(c) Conditional Inference Tree
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(d) Random Forest
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: In each panel the x-axis indicates the country-specific inequality of opportunity estimate of the respective estimation approach on the

subsample Nmin, which differs by method. Analogously, the y-axis indicates the country-specific inequality of opportunity estimate of the
respective estimation approach on the full sample N . For all methods inequality of opportunity is measured by the Gini coefficient in the

estimated counterfactual distribution ŷC . The black solid line is the 45-degree line. Country-estimates above the 45-degree line indicate an
underestimation of inequality of opportunity relative to the full sample benchmark. Reversely, country-estimates below the 45-degree line
indicate an overestimation of inequality of opportunity relative to the full sample benchmark. To avoid the intricacies of tuning forests, we
set P̄∗ = 8 and α∗ = 1. As a consequence, our benchmark estimates may slightly differ from the ones reported in the main text.

Panels (a) and (b) illustrate that the parametric and non-parametric approaches tend

to overestimate inequality of opportunity as sample sizes decline. This is a direct con-

sequence of fixing the number of model parameters a priori. As the available degrees of
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freedom decline, the model tends to overfit, which translates into upward biased estimates

of inequality of opportunity (see Appendix Section A.III). To the contrary, in the case of

trees and forests (Panels (c) and (d)) country estimates align closely along the 45-degree

line. This pattern illustrates that trees and forests are less sensitive to variations in the

sample size. On the one hand, if the sample size is small, the p-values of the hypothesis

tests will increase and less splits will be conducted. This prevents the models from over-

fitting and safeguards the inequality of opportunity estimate against overestimation. On

the other hand, both methods allow for extremely flexible functional forms in the con-

struction of ŷC . Hence, even when reducing the sample size by a factor of 5.8 (Italy) the

estimate from the subsample closely aligns with the inequality of opportunity estimate

from the full country sample.

We conclude that inequality of opportunity comparisons across countries based on

trees and forests are more robust to sample size variations than alternative estimation

approaches.
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A.V Point Estimates and Confidence Intervals

Table A.2: Inequality of Opportunity Estimates

Benchmark Methods Conditional Inference

Country Parametric
Non-

Parametric
Latent Class Tree Random Forest

AT 0.089
[0.081;0.097]

0.075
[0.067;0.083]

0.080
[0.070;0.090]

0.087
[0.076;0.097]

0.088
[0.080;0.096]

BE 0.111
[0.100;0.121]

0.087
[0.080;0.094]

0.053
[0.036;0.071]

0.087
[0.078;0.096]

0.091
[0.084;0.098]

BG 0.154
[0.145;0.163]

0.136
[0.126;0.145]

0.115
[0.106;0.124]

0.136
[0.127;0.146]

0.134
[0.124;0.144]

CH 0.092
[0.081;0.103]

0.083
[0.075;0.091]

0.063
[0.047;0.079]

0.080
[0.068;0.091]

0.090
[0.082;0.098]

CY 0.094
[0.085;0.103]

0.083
[0.073;0.094]

0.074
[0.058;0.090]

0.080
[0.066;0.094]

0.080
[0.065;0.095]

CZ 0.072
[0.065;0.079]

0.066
[0.059;0.073]

0.060
[0.051;0.069]

0.057
[0.048;0.066]

0.051
[0.044;0.058]

DE 0.070
[0.063;0.078]

0.059
[0.053;0.064]

0.047
[0.039;0.054]

0.070
[0.062;0.077]

0.079
[0.074;0.085]

DK 0.077
[0.046;0.108]

0.041
[0.030;0.052]

0.029
[0.018;0.040]

0.021
[0.011;0.031]

0.020
[0.015;0.026]

EE 0.111
[0.098;0.124]

0.102
[0.091;0.113]

0.074
[0.059;0.090]

0.097
[0.084;0.110]

0.101
[0.088;0.113]

EL 0.148
[0.130;0.165]

0.121
[0.110;0.132]

0.117
[0.099;0.134]

0.126
[0.111;0.142]

0.109
[0.094;0.124]

ES 0.142
[0.132;0.152]

0.120
[0.114;0.126]

0.089
[0.069;0.109]

0.128
[0.122;0.135]

0.120
[0.105;0.135]

FI 0.069
[0.049;0.088]

0.052
[0.041;0.062]

0.048
[0.032;0.063]

0.020
[0.009;0.031]

0.028
[0.021;0.034]

FR 0.086
[0.080;0.092]

0.086
[0.080;0.093]

0.072
[0.062;0.081]

0.090
[0.082;0.099]

0.098
[0.092;0.104]

HR 0.131
[0.117;0.146]

0.088
[0.080;0.097]

0.076
[0.064;0.088]

0.082
[0.070;0.095]

0.076
[0.066;0.087]

HU 0.110
[0.104;0.116]

0.103
[0.098;0.109]

0.095
[0.087;0.104]

0.113
[0.108;0.119]

0.108
[0.102;0.114]

IE 0.105
[0.092;0.118]

0.097
[0.087;0.108]

0.048
[0.029;0.068]

0.084
[0.070;0.099]

0.078
[0.069;0.087]

IS 0.067
[0.029;0.104]

0.032
[0.021;0.043]

0.030
[0.017;0.042]

0.012
[0.004;0.021]

0.016
[0.010;0.022]

IT 0.121
[0.113;0.130]

0.091
[0.086;0.095]

0.080
[0.068;0.091]

0.108
[0.102;0.113]

0.097
[0.090;0.104]

LT 0.095
[0.079;0.110]

0.067
[0.058;0.077]

0.059
[0.048;0.070]

0.069
[0.053;0.085]

0.067
[0.055;0.080]

LU 0.134
[0.125;0.143]

0.121
[0.114;0.127]

0.090
[0.072;0.109]

0.133
[0.125;0.140]

0.136
[0.130;0.142]

LV 0.134
[0.119;0.148]

0.110
[0.100;0.120]

0.095
[0.079;0.112]

0.110
[0.097;0.124]

0.111
[0.100;0.122]

MT 0.087
[0.075;0.099]

0.080
[0.071;0.089]

0.057
[0.047;0.067]

0.071
[0.059;0.083]

0.072
[0.062;0.082]

NL 0.066
[0.050;0.082]

0.053
[0.047;0.059]

0.041
[0.029;0.053]

0.028
[0.020;0.037]

0.019
[0.015;0.024]

NO 0.048
[0.032;0.064]

0.041
[0.031;0.050]

0.030
[0.019;0.041]

0.020
[0.012;0.028]

0.023
[0.018;0.029]

PL 0.111
[0.104;0.118]

0.097
[0.091;0.104]

0.095
[0.088;0.102]

0.102
[0.095;0.109]

0.099
[0.092;0.106]

PT 0.138
[0.128;0.148]

0.124
[0.113;0.134]

0.116
[0.102;0.129]

0.136
[0.124;0.149]

0.127
[0.114;0.140]

RO 0.170
[0.158;0.182]

0.104
[0.094;0.114]

0.119
[0.105;0.134]

0.120
[0.109;0.132]

0.111
[0.100;0.122]

SE 0.118
[0.037;0.199]

0.060
[0.043;0.078]

0.025
[0.007;0.043]

0.025
[0.016;0.033]

0.031
[0.025;0.038]

SI 0.077
[0.069;0.085]

0.073
[0.066;0.080]

0.059
[0.051;0.067]

0.032
[0.024;0.039]

0.036
[0.032;0.040]

SK 0.063
[0.055;0.071]

0.051
[0.045;0.057]

0.042
[0.033;0.051]

0.050
[0.041;0.058]

0.046
[0.039;0.053]

UK 0.101
[0.087;0.115]

0.090
[0.080;0.099]

0.062
[0.042;0.082]

0.071
[0.056;0.087]

0.079
[0.071;0.087]

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).

Note: Inequality of opportunity is measured by the Gini coefficient in the estimated counterfactual distribution ŷC . ŷC is
constructed by the respective estimation approach indicated in the table header. 95% confidence intervals are derived based on
200 bootstrapped re-samples using the normal approximation method.
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A DESCRIPTIVE STATISTICS

Table A.1: Descriptive Statistics (Individual and Household)

Birth Area Parents in HH HH Composition

Country Male Native EU Both None Adults
Working
Ad.

Children
Home
Owner

AT 0.501 0.790 0.070 0.856 0.017 2.730 1.760 2.600 0.585
BE 0.498 0.824 0.076 0.855 0.019 2.380 1.590 2.780 0.750
BG 0.500 0.994 0.001 0.904 0.012 2.440 2.010 2.070 0.910
CH 0.505 0.684 0.197 0.837 0.017 2.550 1.900 2.530 0.546
CY 0.525 0.787 0.096 0.900 0.015 2.640 1.670 2.700 0.784
CZ 0.508 0.964 0.026 0.851 0.013 2.090 1.920 2.240 0.597
DE 0.496 0.868 0.000 0.830 0.020 2.240 1.680 2.320 0.499
DK 0.505 0.923 0.026 0.809 0.027 2.220 2.310 2.240 0.736
EE 0.525 0.847 0.000 0.756 0.011 2.100 1.800 2.090 0.859
EL 0.498 0.890 0.025 0.931 0.019 2.310 1.560 2.330 0.834
ES 0.495 0.834 0.051 0.893 0.012 2.880 2.110 2.430 0.819
FI 0.499 0.954 0.018 0.829 0.016 2.360 1.750 2.300 0.772
FR 0.509 0.885 0.036 0.820 0.022 2.470 1.660 1.750 0.630
HR 0.501 0.875 0.017 0.874 0.020 2.560 1.350 2.310 0.902
HU 0.517 0.988 0.008 0.844 0.041 2.140 1.750 2.270 0.830
IE 0.524 0.783 0.149 0.893 0.078 3.170 3.200 3.200 0.727
IS 0.507 0.920 0.042 0.899 0.012 2.420 1.900 2.630 0.893
IT 0.502 0.880 0.040 0.901 0.011 2.590 1.620 2.410 0.685
LT 0.521 0.939 0.004 0.846 0.016 2.320 2.020 2.460 0.698
LU 0.499 0.480 0.401 0.868 0.020 2.530 1.640 2.710 0.734
LV 0.520 0.865 0.000 0.763 0.012 1.970 1.760 2.280 0.455
MT 0.497 0.944 0.000 0.932 0.020 3.020 1.840 2.680 0.576
NL 0.509 0.903 0.020 0.882 0.016 2.100 1.540 3.250 0.575
NO 0.511 0.907 0.041 0.913 0.014 2.020 1.760 1.870 0.922
PL 0.504 0.999 0.000 0.889 0.015 2.700 1.960 2.440 0.644
PT 0.506 0.906 0.022 0.854 0.017 2.680 2.230 2.680 0.544
RO 0.506 0.999 0.000 0.919 0.009 2.770 1.900 2.270 0.861
SE 0.493 0.846 0.050 0.820 0.035 2.070 1.780 2.350 0.757
SI 0.496 0.876 0.000 0.855 0.019 2.530 1.770 2.200 0.746
SK 0.519 0.987 0.010 0.920 0.010 2.520 2.080 2.340 0.694
UK 0.507 0.848 0.042 0.825 0.024 2.340 2.240 2.410 0.649

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: Omitted circumstance expressions listed in order of the circumstance categories are: “Female”; “Non-EU”; “Only Mother/Only Fa-
ther/Collective House”; “House Not Owned”.
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B ALTERNATIVE INEQUALITY INDIXES

Figure B.1: Correlation of Estimates by Method (GE(0))

(a) Parametric Approach
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(b) Non-Parametric Approach
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(c) Latent Class Analysis
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(d) Conditional Inference Tree
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: In each panel, the y-axis shows the inequality of opportunity estimate from the method in question divided by the inequality of oppor-
tunity estimate from forests, displayed on a logarithmic scale. Country-estimates above the black line indicate an overestimation of inequality
of opportunity relative to the random forest benchmark. Reversely, country-estimates below the black line indicate an underestimation of
inequality of opportunity relative to the random forest benchmark. For all methods inequality of opportunity is measured by the GE(0) index

in the estimated counterfactual distribution ŷC . The figure is top (bottom) coded at +600% (−83%).
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Figure B.2: Correlation of Estimates by Method (GE(1))

(a) Parametric Approach

−83%

−75%

−67%

−50%

−33%

0

+50%

+100%

+200%

+300%

+600%

DE
 FR

CH
 LU

AT
 HU

EE
 PT

CY
 LV

ES
 PL

BE
 BG

MT
 EL

IT
 UK

IE
 SK

CZ
 LT

RO
 HR

NO
 SI

FI
 NL

DK
 SE

IS
 AVG

In
eq

ua
lit

y 
of

 o
pp

or
tu

ni
ty

 e
st

im
at

e 
re

la
tiv

e 
to

 fo
re

st
s

(b) Non-Parametric Approach
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(c) Latent Class Analysis
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(d) Conditional Inference Tree
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: In each panel, the y-axis shows the inequality of opportunity estimate from the method in question divided by the inequality of oppor-
tunity estimate from forests, displayed on a logarithmic scale. Country-estimates above the black line indicate an overestimation of inequality
of opportunity relative to the random forest benchmark. Reversely, country-estimates below the black line indicate an underestimation of
inequality of opportunity relative to the random forest benchmark. For all methods inequality of opportunity is measured by the GE(1) index

in the estimated counterfactual distribution ŷC . The figure is top (bottom) coded at +600% (−83%).
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Figure B.3: Correlation of Estimates by Method (GE(2))

(a) Parametric Approach
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(b) Non-Parametric Approach
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(c) Latent Class Analysis
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(d) Conditional Inference Tree
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: In each panel, the y-axis shows the inequality of opportunity estimate from the method in question divided by the inequality of oppor-
tunity estimate from forests, displayed on a logarithmic scale. Country-estimates above the black line indicate an overestimation of inequality
of opportunity relative to the random forest benchmark. Reversely, country-estimates below the black line indicate an underestimation of
inequality of opportunity relative to the random forest benchmark. For all methods inequality of opportunity is measured by the GE(2) index

in the estimated counterfactual distribution ŷC . The figure is top (bottom) coded at +600% (−83%).
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C OPPORTUNITY STRUCTURES

Trees

Figure C.4: Opportunity Tree (Austria)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.5: Opportunity Tree (Belgium)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .

Figure C.6: Opportunity Tree (Switzerland)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.7: Opportunity Tree (Cyprus)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .

Figure C.8: Opportunity Tree (Czech Republic)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.9: Opportunity Tree (Denmark)

birth_area
p < 0.001

Native {EU, Outside EU}

occ_father
p < 0.001

≤ 4 > 4
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y = 36382

3
n = 4525
y = 34584

4
n = 407

y = 28356

5

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .

Figure C.10: Opportunity Tree (Estonia)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.11: Opportunity Tree (Greece)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.13: Opportunity Tree (Finland)

father_edu
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y = 27891
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n = 221

y = 19308

7

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .

Figure C.14: Opportunity Tree (France)
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30
n = 248
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31

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.15: Opportunity Tree (Croatia)
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y = 4355

14
n = 809
y = 5191
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .

Figure C.16: Opportunity Tree (Ireland)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.20: Opportunity Tree (Lithuania)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .

Figure C.21: Opportunity Tree (Latvia)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.22: Opportunity Tree (Malta)
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≤ 7 > 7
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y = 11949

12
n = 734
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.23: Opportunity Tree (Netherlands)
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y = 21617

9

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .

Figure C.24: Opportunity Tree (Norway)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.28: Opportunity Tree (Slovenia)

occ_mother
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≤ 7 > 7

n = 728
y = 13691

9
n = 9248
y = 13932

10
n = 1541
y = 11871

11

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .

Figure C.29: Opportunity Tree (Slovakia)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Figure C.30: Opportunity Tree (United Kingdom)
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{Native, EU}Outside EU

n = 269
y = 19297

18
n = 126

y = 14473

19

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section II). The set of observed circumstances Ω used
to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes
indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the p-value associated with the respective
split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the

second number shows the respective estimate of the conditional expectation yC .
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Forests

Figure C.31: Variable Importance Plot
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).

Note: Each dot shows the importance of a particular circumstance variable ωp. Variable importance is measured by the decrease in MSEOOB

after permuting ωp such that it is orthogonal to y. The importance measure is standardized such that the circumstance with the greatest
importance in each country equals 1. The forests are constructed by the conditional inference algorithm (Section II). The set of observed
circumstances Ω used to construct the conditional inference tree is detailed in Table 1.
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Figure C.32: Variable Importance Map

Birth Area Father's Education Father's Occupation Mother's Education Mother's Occupation

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).

Note: Each color shows the most important circumstance in each country. Variable importance is measured by the decrease in MSEOOB

after permuting ωp such that it is orthogonal to y. The forests are constructed by the conditional inference algorithm (Section II). The set of
observed circumstances Ω used to construct the conditional inference tree is detailed in Table 1.
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